Billions of years of R&D
Billions of years of R&D
+
gaazhag:

Annual Public Bembe in the Santo Amaro Market
On the 13th of May 1888 slavery was abolished in Brazil, by the signature of Princesa Isabel of Portugal. And it was on the 13th of May in 1889 (some say it was several days earlier) that Candomblé priest João Obá stood by the Subae river just off of Santo Amaro’s market square and began to play a rhythm which when played in a house of Candomblé is meant to call down an Orisha.
One by one others arrived, and began dancing the dances of Candomblé in what was the first instance of these religious manifestations being conducted outside a place meant for that purpose. And so a century later the tradition continues in Santo Amaro’s market square proper, on the Wednesday, Thursday, Friday, Saturday and Sunday incorporating May 13th (although Friday, being the day of Oxalá and a day in which Candomblé is never conducted, sees a respite; the other activities which are ancillary to the Bembé, the samba-de-roda, capoeira and maculelê, continue).  Link
gaazhag:

Annual Public Bembe in the Santo Amaro Market
On the 13th of May 1888 slavery was abolished in Brazil, by the signature of Princesa Isabel of Portugal. And it was on the 13th of May in 1889 (some say it was several days earlier) that Candomblé priest João Obá stood by the Subae river just off of Santo Amaro’s market square and began to play a rhythm which when played in a house of Candomblé is meant to call down an Orisha.
One by one others arrived, and began dancing the dances of Candomblé in what was the first instance of these religious manifestations being conducted outside a place meant for that purpose. And so a century later the tradition continues in Santo Amaro’s market square proper, on the Wednesday, Thursday, Friday, Saturday and Sunday incorporating May 13th (although Friday, being the day of Oxalá and a day in which Candomblé is never conducted, sees a respite; the other activities which are ancillary to the Bembé, the samba-de-roda, capoeira and maculelê, continue).  Link
gaazhag:

Annual Public Bembe in the Santo Amaro Market
On the 13th of May 1888 slavery was abolished in Brazil, by the signature of Princesa Isabel of Portugal. And it was on the 13th of May in 1889 (some say it was several days earlier) that Candomblé priest João Obá stood by the Subae river just off of Santo Amaro’s market square and began to play a rhythm which when played in a house of Candomblé is meant to call down an Orisha.
One by one others arrived, and began dancing the dances of Candomblé in what was the first instance of these religious manifestations being conducted outside a place meant for that purpose. And so a century later the tradition continues in Santo Amaro’s market square proper, on the Wednesday, Thursday, Friday, Saturday and Sunday incorporating May 13th (although Friday, being the day of Oxalá and a day in which Candomblé is never conducted, sees a respite; the other activities which are ancillary to the Bembé, the samba-de-roda, capoeira and maculelê, continue).  Link
+
10bullets:

Magwa Falls by hougaard
+
+
goldenzot:

thezenisinu:

kingsxoqueens:

The opposite of albinism called melanism, a recessive trait where the skin and fur are all black.

VERY VERY VERY VERY RARE

yoooooooooooooooooooo


Is this for real?
+
vicemag:

Photographing the Beauty and Inhumanity of Asia’s Cramped Megacities
vicemag:

Photographing the Beauty and Inhumanity of Asia’s Cramped Megacities
vicemag:

Photographing the Beauty and Inhumanity of Asia’s Cramped Megacities
+
gan-edhen:


A woman drinks tea, 1940, in the aftermath of a German bombing raid during the London Blitz

My grandmother used to refuse to go down to the shelter with her family during air raids and insisted on staying in the house because “Hitler wasn’t going to tell her what to do”
+
notgreenpaint:

incubic:

acadenza:

mrscalypsojackson:

imperfectwriting:

wanderlusity:

tigerrcat:

tai-kwon-joe:

Sometimes, the adolescent elephant will throw itself upon the ground as a sign of extreme emotional distress, commonly known as a “tantrum.”

i am an adolescent elephant

same

If you do not need an emo teenaged elephant on your blog, you are running the wrong type of blog.

the mom is like “Christopher, please, christopher the neighbors are staring, il buy you the ps3 just, chris, FOR CHRISTS SAKE CHRIS GET UP”

one with the teenaged elephant i feel u lil guy

omg

lots of highly intelligent social mammals throw tantrums, and it is the most adorable thing
juvenile chimps will fling themselves backwards on the ground like they’re about to DIE, in order to get their mom’s attention - especially if she has a new infant and they don’t like it
animals are amazing
+
g0ds-own-prototype:

funnywildlife:

Strange tree with a fresh water spring #Kashmir

guys, i think i found the fountain of youth
+
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
ysociety:

East L.A. — 4/19
+
neuromorphogenesis:

The First Lifeform Capable Of Passing Down A Juiced-Up Version Of DNA
Scientists have engineered the first living microbe that can carry and pass down an expanded genetic code to future generations — one that has six base pairs instead of the usual four. It’s a breakthrough that will not only allow us to build powerful new forms of life, it’s also changing what we know about evolution.
It’s the result of nearly 15 years of work — a reconstituted version of the E. coli bacteria that boasts two artificial base blocks of DNA. The new semi-synthetic organism, with its expanded genetic alphabet, gives rise to further possibilities, including novel cells that can produce drugs and other useful molecules, or more conceptually, cells and organisms without any of the four DNA bases currently used by all creatures on Earth.
There’s More to Life Than Just A, T, C, and G
But there’s more to this breakthrough than just this. It shows that DNA is far more dynamic and malleable that we thought, and that if we were to rewind and restart Earth’s evolutionary clock, an entirely different molecule could have emerged.
"This has very important implications for our understanding of life," noted lead researcher Floyd Romesberg in a Guardian article. “For so long people have thought that DNA was the way it was because it had to be, that it was somehow the perfect molecule.”
Indeed, all life on Earth has been written with the exact same DNA code of four letters — and it’s been that way since day one.
Each strand of the DNA’s double helix has four “building block” bases attached to them, adenine (A), thymine (T), cytosine (C) and guanine (G). Our DNA can be written using this simple four-letter alphabet. The bases bind the two DNA strands together, where A bonds with T (and vice versa), while C and G do the same. In humans, these four letters make up the entire three billion base pairs of our genetic code. These base pairs make our genes, which are used by cells as templates for making proteins.
All the diversity of life on Earth is encoded by these two pairs of DNA bases, A-T and C-G. But what Romesberg and his team at the Scripps Research Institute in California has done is create an organism that stably contains the regular two, plus a third, synthetic pair of bases. According to the researchers, this shows that other solutions to storing genetic information may be possible. If so, it could result in an expanded-DNA biology that’s likely to introduce many new possibilities, from new medicines to all kinds of nanotechnology.
And Along Came X and Y
The extra fifth and sixth letters have been dubbed X and Y, thus forming a third base pair, X-Y. To make the synthetic DNA work, a loop of genetic material was inserted into an E. coli bacterium that carried normal DNA and the third X-Y pair (also referred to by their longer chemical names, d5SICS and dNaM).
The researchers found that, when the bacteria divided, they successfully passed on the natural DNA. And incredibly, they also copied and passed down the synthetic code on to the next generation. The subsequent generation did likewise. This research, which now appears in Nature, shows for the very first time that an organism can stably host a third base pair while still maintaining its ability to harbor natural ones.
For now, the third base pair does nothing in the cell. The next step will be to modify the organism such that it can actually do something useful with its synthetic components.
Future Potential
There’s no shortage of ideas. By expanding the genetic alphabet, and by allowing more data to be stored in DNA, scientists could develop new drugs, diagnostic tools, vaccines, and nanomaterials. Other possibilities include biological circuits and cells that don’t exist in nature.
Lastly, it’s important to note that, for safety reasons, the unnatural DNA has a built-in safety mechanism; the modified E. coli can only survive if it’s fed certain chemicals required to replicate the DNA.
Reference: A semi-synthetic organism with an expanded genetic alphabet.
neuromorphogenesis:

The First Lifeform Capable Of Passing Down A Juiced-Up Version Of DNA
Scientists have engineered the first living microbe that can carry and pass down an expanded genetic code to future generations — one that has six base pairs instead of the usual four. It’s a breakthrough that will not only allow us to build powerful new forms of life, it’s also changing what we know about evolution.
It’s the result of nearly 15 years of work — a reconstituted version of the E. coli bacteria that boasts two artificial base blocks of DNA. The new semi-synthetic organism, with its expanded genetic alphabet, gives rise to further possibilities, including novel cells that can produce drugs and other useful molecules, or more conceptually, cells and organisms without any of the four DNA bases currently used by all creatures on Earth.
There’s More to Life Than Just A, T, C, and G
But there’s more to this breakthrough than just this. It shows that DNA is far more dynamic and malleable that we thought, and that if we were to rewind and restart Earth’s evolutionary clock, an entirely different molecule could have emerged.
"This has very important implications for our understanding of life," noted lead researcher Floyd Romesberg in a Guardian article. “For so long people have thought that DNA was the way it was because it had to be, that it was somehow the perfect molecule.”
Indeed, all life on Earth has been written with the exact same DNA code of four letters — and it’s been that way since day one.
Each strand of the DNA’s double helix has four “building block” bases attached to them, adenine (A), thymine (T), cytosine (C) and guanine (G). Our DNA can be written using this simple four-letter alphabet. The bases bind the two DNA strands together, where A bonds with T (and vice versa), while C and G do the same. In humans, these four letters make up the entire three billion base pairs of our genetic code. These base pairs make our genes, which are used by cells as templates for making proteins.
All the diversity of life on Earth is encoded by these two pairs of DNA bases, A-T and C-G. But what Romesberg and his team at the Scripps Research Institute in California has done is create an organism that stably contains the regular two, plus a third, synthetic pair of bases. According to the researchers, this shows that other solutions to storing genetic information may be possible. If so, it could result in an expanded-DNA biology that’s likely to introduce many new possibilities, from new medicines to all kinds of nanotechnology.
And Along Came X and Y
The extra fifth and sixth letters have been dubbed X and Y, thus forming a third base pair, X-Y. To make the synthetic DNA work, a loop of genetic material was inserted into an E. coli bacterium that carried normal DNA and the third X-Y pair (also referred to by their longer chemical names, d5SICS and dNaM).
The researchers found that, when the bacteria divided, they successfully passed on the natural DNA. And incredibly, they also copied and passed down the synthetic code on to the next generation. The subsequent generation did likewise. This research, which now appears in Nature, shows for the very first time that an organism can stably host a third base pair while still maintaining its ability to harbor natural ones.
For now, the third base pair does nothing in the cell. The next step will be to modify the organism such that it can actually do something useful with its synthetic components.
Future Potential
There’s no shortage of ideas. By expanding the genetic alphabet, and by allowing more data to be stored in DNA, scientists could develop new drugs, diagnostic tools, vaccines, and nanomaterials. Other possibilities include biological circuits and cells that don’t exist in nature.
Lastly, it’s important to note that, for safety reasons, the unnatural DNA has a built-in safety mechanism; the modified E. coli can only survive if it’s fed certain chemicals required to replicate the DNA.
Reference: A semi-synthetic organism with an expanded genetic alphabet.